

Forensic analysis of automobile paint of Indian company

Priyanka Verma^{1*}, Manmeet kaur², Navjot Kaur³

¹Assistant Professor, ²Student, ³Research Scholar, Dept. of Forensic Science & Toxicology, ¹⁻³Chandigarh University, Gharaun, Mohali Punjab, India

Abstract

The present study was done in an attempt to distinguish between paint samples of automobiles obtained from cars of same company "MARUTI". 20 samples of paint were analyzed with the help of solubility tests and 5 samples with the help of instruments such as UV Spectrophotometry each. The solubility tests were performed using 3 liquids, Chloroform, Sulphuric acid and Nitric acid. The results obtained clearly proved that the combination of both methods yields better results than when used individually. Through this research, a database has been created which can be useful in further forensic related work. It can be really helpful in hit and run cases where possibility of exchange of paint is very high.

Keywords: Solubility tests, UV Spectrophotometry, Automobile paint, Forensic analysis.

Introduction

Paint can be considered phenomenal forensic evidence or evidence that can be helpful to solve crimes. It is a type of trace evidence like glass, hairs and fibers that can be found in trace amounts on the crime scene but can be solely responsible for the conviction of the perpetrator. Automobile paint evidence can be especially relevant in hit and run cases or other cases where automobiles are involved. Car paint is one of the most received evidence in forensic laboratories. The paint chips or paint smears are generally transferred from the car to the clothing of the victim or another car during an impact with the first car. Paint chips and smears can be easily compared to a suspect's vehicle to check whether the vehicle has been involved in any hit and run accident or not. These chips can also be matched by fitting them to any missing section on the vehicle like puzzle pieces are fitted.

Automotive paint is paint which is used for protection and decoration on the automobile. The widely used paint nowadays is water based acrylic polyurethane enamel paint due to its less harmful effect on the environment.¹ Modern used automobile paint is applied with a thickness of 100 μ m (0.1mm).

Automobile paint consists of mainly three components; binder, pigment and additives.

There are many research articles published on paint evidence nowadays. In most of them, the primarily used method of examination is visual examination using microscopy^{5,7} as in *Gothard* (1976) and *Ryland* (1978). Solubility tests and chemical tests were also used as a way of identifying various pigments present in the paint sample as done by *Cassissta* and *Sandercock* in 1994. They performed micro chemical spot tests to identify the number and type of pigments present in the paint samples.

For the confirmatory tests, Instrumentation is proven to be the best method used to identify and quantify all the elements present in the paint samples. FTIR was the most favored technique in all the current research papers.²⁵ This was due to the fact that it gives accurate results and is easy to use. Usually FTIR was coupled with a number of techniques; Pyrolysis gas chromatography,^{9,10} SEM-EDX,²¹ Raman spectroscopy.²⁴ Another technique used was LA-ICP-MS¹⁹ which was sometimes coupled with FTIR but sometimes used alone. This yielded surprising good results.

*Corresponding Author: Priyanka Verma, Dept. of Forensic Science & Toxicology, Chandigarh University, Gharaun, Mohali Punjab, India Email: priyankakverma25@gmail.com http://doi.org/10.18231/j.ijfmts.2019.017 This study used UV Spectrophotometry and Solubility tests in combination to identify various elements present in the sample. Peaks were obtained which matched certain elements through which they were identified. UV Spectrophotometry proved to be really useful technique to differentiate between different samples of same company by identifying elements that were specifically present in them.

The results obtained from the analysis of paint using instrumentation yielded the results that combination of 2-3 techniques always gives accurate results rather than using single technique. Coupling of techniques is the best way to ensure that all the elements that are present in the sample are identified and quantified.

Materials and Methods Collection of Samples

In this study, 20 samples of paint chips were collected from cars of Indian brand "MARUTI". They were collected from various sources like Police Stations, Denting and Painting shops, Showrooms located in the area of Mohali, Ludhiana and Sri Muktsar Sahib. One company was targeted due to a large number of cars of this brand only. The paint chips were collected using Surgical Blade.

Analysis

Solubility tests

Solubility tests were performed using chemicals like Chloroform, Sulphuric Acid and Nitric Acid. The chips were dipped in these chemicals for 3 days. Every day, the test tubes containing the heterogeneous mixture were observed. The changes occurring in them were carefully observed and noted down.

Instrumental analysis

Instrumental analysis was also done with the help of UV Spectrophotometer. This instrument was chosen because it gives the most accurate result in combination as to which elements are present in the given paint sample. Also the results are precise and provide us with even the smallest element present in the paint sample. UV Spectrophotometer gives results in the form of peaks in the ultraviolet range that is 10nm to 400nm.

Results and Discussion

In this study, 3 chemicals were used for the purpose of solubility tests; Sulphuric acid, Nitric acid and Chloroform.

With Sulphuric acid, the samples interacted the most. Slight Shrinkage and curling was seen on the very first day. Another important thing was formation of dark brown/ black rings on the surface of solution in which the sample floated whereas rest of the solution was clear. Fragmentation was also seen starting on first day in many samples. By the second day, the rings formed were still intact in many but in some samples, It was replaced by muddy or brown colored liquid in which the samples were either floating or were settled down. Another thing was separation of layers of samples. On the second day, only top layer was seen separated from the sample whereas by the third day, every layer was separated from each other.

Sample No.	Day 1	Day 2	Day 3
1.	Shrinkage, Bleeding brown,	Dark brown ring formed on	Dark brown colored
	Top layer removed which	upper side of solution while	solution with sample
	floated	rest of the solution is slight	floating in it, NOC
		yellow, Fragmented sample	
2.	Slight shrinkage, Dark	Floating sample, Complete	Dark brown colored
	brown ring formed on	shrinkage of sample	solution, NOC
	upper side of solution while		
	rest of the solution is clear		
3.	Bleeding light yellow,	Urine colored solution	NOC

Table 1: Showing changes occurred in various samples when dissolved in Sulphuric acid (H₂SO₄)

	Floating, Slightly shrinked		
4.	Sample gets enlarged, Dark	Sample floating, papery, soft	Layers of sample gets
	brown ring formed on	and curled, Muddy colored	separated, NOC
	upper side of solution while	and dense solution	
	rest of the solution is clear		
5.	Bleeding light brown, Dark	Dark brown ring formed on	Ring remain intact with
	brown ring formed on	upper side of solution while	pieces of sample floating
	upper side of solution while	rest of the solution is slight	in it
	rest of the solution is clear	yellow, Fragmented sample	
6.	Dark brown ring formed on	Ring intact with sample	NOC
	upper side of solution while	floating in it.	
	rest of the solution is slight		
	yellow, Fragmented sample	a	
7.	Slightly curled, Top layers	Sample became soft and	All the layers gets
	gets separated and starts	papery, Solution becomes	separated, NOC
	floating	dark brown	
8.	Fragmentation begins,	Muddy colored dense	Fragmentation completes,
	Dense liquid	solution, Sample curled and	Slightly curled fragments
	Chainhean Dhadina haaraa	floating	NOC
9.	Shrinkage, Bleeding brown,	Sample floating, papery, soft	NOC
	Top layer removed which	and curred, Muddy colored	
10	Dialed	Black colored ring with	Sintring of comple block
10.	sample floating in it	fragments of sample formed	ring romain intest
	Sample slightly curled	on upper side while rest of the	Thig Temain Intact
	Floating	solution is vellow	
11	Fragmentation begins	Sample became soft and	Complete fragmentation
11.	Brown colored solution	papery Dark brown color	of sample NOC
	Dense liquid	occurred	or sumple, rece
12.	Fragmentation begins.	Black colored solution	Sample almost dissolved
	Floating sample		and visible only when
			shaked
13.	Fragmentation begins,	Muddy colored dense	Fragmentation completes,
	Dense liquid	solution, Sample curled and	Slightly curled fragments
		floating	
14.	Bleeding light yellow	NOC	NOC
15.	Slight shrinkage, Dark	Ring intact with sample	Dark brown colored
	brown ring formed on	floating in it	solution, NOC
	upper side of solution while		
	rest of the solution is clear		
16.	Slightly curled, Dark brown	Fragmented sample, Dense	NOC
	ring formed on upper side	muddy colored solution with	
	of solution which contains	fragments floating in it	
	sample, while rest of the		
	solution is clear		

17.	Fragmentation begins,	Muddy colored dense	Fragmentation completes,
	Dense brown colored liquid	solution, Sample curled and	Slightly curled fragments
		floating	
18.	Slight shrinkage, Dark	Floating sample, Complete	Dark brown colored
	brown ring formed on	shrinkage of sample	solution, NOC
	upper side of solution while		
	rest of the solution is clear		
19.	Slightly curled, Top layers	Sample became soft and	All the layers gets
	gets separated and starts	papery, Solution becomes	separated, NOC
	floating	dark brown	
20.	Bleeding light yellow,	Urine colored solution	NOC
	sample floating and slightly		
	curled		

In Nitric acid, the samples reacted mildly. The samples either slightly curled or shrank on the first day. Some of the samples even got swollen. Slight fragmentation was also seen. The second day was when most of the bleeding occurred. Most samples bleeded yellow / urine color whereas 2-3 were seen bleeding light green color. Fragmentation was seen reaching its peaks. Curling and shrinking of the samples was also seen. By the third day, most of the samples did not show any further changes but some samples bleeded yellow. An interesting thing to note was that this was the only liquid in which some samples do not reacted at all on any day.

Sample No.	Day 1	Day 2	Day 3
1.	Slight color change to light	Urine colored solution,	NOC
	yellow	Sample shrank and sank	
2.	Fragmentation starts and	Urine colored solution,	NOC
	slight bleeding	Fragmentation complete	
3.	No visible changes	No visible changes	No visible changes
4.	Slightly curled, Settled	Sample curled and solution is	Sample fragmented into
	down, Shrinking done	cloudy in nature	large pieces
5.	Curled, bleeding slight	Sample curled, fragmented	NOC
	yellow, Fragmentation and	and settled down	
	shrinking starts		
6.	Sample curled, float, and	Sample settled down	No other visible changes
	bleed white		
7.	Sample curled and swollen,	Top layer fragmented while	Sample floats and starting
	Top layer gets separated	other layers still intact,	to get fragmented into
		Sample swollen and bleeds	further very little pieces
		light yellow	
8.	Slight color change to light	Fragmentation starts	Fragmentation completes,
	yellow		NOC
9.	Sample curled, float, and	Sample settled down	NOC
	bleed white		
10.	Bleeding slight yellow,	Sample curled, fragmented	Some of the sample float
	Fragmentation and	and swollen, Bleeds light	and some sank

Table 2: Showing changes occurred in various samples when dissolved in Nitric acid (HNO₃)

	shrinking starts	green color	
11.	Swollen and curled sample,	All the layers gets separated,	Sample settled down,
	Top layer gets separated	Fragmentation starts, yellow	NOC
	and floats	colored solution	
12.	Sample gets swelled and	Sample swollen and	Sample settled down,
	floats, Fragmentation starts	fragmented, Bleeds light	NOC
		green	
13.	Sample curled and swollen,	All the sample gets	Bleed slight yellow
	Top layer gets separated	fragmented	
14.	Bleeding slight yellow,	Sample curled, fragmented	Some of the sample float
	Fragmentation and	and swollen, Bleeds light	and some sank
	shrinking starts	green color	
15.	Sample curled and solution	Sample fragmented into large	NOC
	is cloudy in nature	pieces	
16.	Sample curled, float, and	Sample settled down No other visible char	
	bleed white		
17.	Solution slight yellow and	Sample curled, swollen and	Bleeds yellow, and float
	opaque in nature	settled down, Solution a bit	
		cloudy	
18.	Fragmentation starts and	Urine colored solution,	NOC
	slight bleeding	Fragmentation complete	
19.	Sample curled and swollen,	Top layer fragmented while	Sample floats and starting
	Top layer gets separated	other layers still intact,	to get fragmented into
		Sample swollen and bleeds	further very little pieces
		light yellow	
20.	No visible changes	No visible changes	No visible changes

In Chloroform, almost all the samples floated on the first day but by the third day, they were settled down. Slight Curling and shrinking was seen on first day where as Bleeding happened rarely. On the second day most of the samples were curled and shrank completely. Bleeding occurred in few samples on the third day whereas most of the samples did not undergo any disastrous change from second to third day. Fragmentation also occurred rarely.

Table 3: Showing changes	occurred in various	samples when	dissolved in	Chloroform	(CHCl ₃)
--------------------------	---------------------	--------------	--------------	------------	----------------------

Sample No.	Day 1	Day 2	Day 3
1.	NVCC, Floating	Settled down	Complete shrinkage
2.	NVCC	Slight color change	NOC
3.	Floating	NVCC	NOC
4.	Curled, NOC	Floating	NOC
5.	NVCC, Floating	Curled Completely	Milky appearance
6.	NVCC, Floating	Curled slightly	Curled completely
7.	NVCC	NOC	NOC
8.	Slightly curled	NVCC	NOC
9.	Bleeding yellow	Floating	NOC
10.	NVCC	Sinking	Bleeding yellow
11.	Bleeding white, Floating	Complete shrinkage	Curled completely

IP International Journal of Forensic Medicine and Toxicological Sciences, July-September, 2019;4(3):74-81

12.	Slight color change, Floating	Slightly shrinked	Shrinkage, Bleeding yellow
13.	Floating	NVCC	NOC
14.	Slightly curled	Sinking	NOCC
15.	NVCC, Floating	NOC	NOC
16.	Shrinkage, Floating	Settled down	Slightly curled
17.	Slight Shrinkage, Floating	Complete shrinkage, settled down	NOC
18.	NVCC, Floating	Shrinkage	Milky appearance
19.	Slight bleeding, Floating	Curled, Fragmentation begins	Fragmentation completes
20.	NVCC, Floating, Slightly curled	Curled completed	NOC

The present study contrasts with a study performed by Cassissta and Sandercock in 1994 in which they used chemicals like Acetone, Toluene, Acetic acid etc to check whether the samples are soluble in these chemicals or not. The samples were not put for more than a few hours as Micro chemical Spot tests were performed. The result was that most of the samples were soluble in these chemicals.

Sample No.	Wavelength	Absorption
5	267.55	0.894
16	245.96	0.722
17	271.25	0.988
18	250.07	0.925
20	254.99	0.993

 Table 4: Showing results of UV spectrophotometry

5 samples of automobile paint were analyzed under UV Spectrophotometry. All the samples show maximum absorption at wavelength 240 - 270 nm. The maximum absorption of 0.993 at wavelength of 254.99 nm was seen by sample 20. Another sample named 17 also showed a maximum absorption of 0.988 at wavelength of 271.25 nm. Almost all the samples showed good absorption peaks in the UV. This study can be a very good basis of forming a handbook which contains all the peaks generated by particular constituent in particular solvent.

The main techniques applied analysis of paint are generally FTIR, RAMAN spectroscopy, IR Spectroscopy, GC-MS and SEM-EDX. In most of the cases it has been seen that, a single technique has never been good at identifying all the elements present in a sample. A combination of 2-3 techniques is best if we want to identify and quantify nearly all the elements. This statement is supported by facts presented by Burke *et al.* (1985), Giang *et al.* (2002), Chen *et al.* (2014) and Kruglak *et al.* (2019).

Fig. 1: Results of UV Spectrophotometry of sample 5

Fig. 2: Results of UV Spectrophotometry of sample 16

Fig. 3: Results of UV Spectrophotometry of sample 17

Fig 4: Results of UV Spectrophotometry of sample 18

Fig 5: Results of UV Spectrophotometry of sample 20

Conclusion

Using solubility tests and instrumentation like UV-Vis Spectrophotometry, all the 20 samples were analyzed and differentiated. Solubility tests act as preliminary tests while instrumentation act as confirmatory test. Nearly all the samples were distinguished using chemicals like Sulphuric acid, Nitric acid and Chloroform. All the samples reacted differently to different chemicals while some reacted to Sulphuric acid very well; others show positive reaction in Nitric acid. UV Spectrophotometry was used to analyze 5 samples but due to unavailability of data, they were not able to get matched with reference. Through this research, a database has been created which can be useful in further forensic related work. It can be really helpful in hit and run cases where possibility of exchange of paint chips is very high.

Source of Funding

None.

Conflict of Interest

None.

References

- Pfanstiehl J (1998). Automotive Paint Handbook: Paint Technology for Auto Enthusiasts & Body Shop Professionals. Penguin. ISBN 978-1-55788-291-2
- A Guide to Seals in the Automotive Industry, Pre-Treatment & Paint Plants by A.R. Thomson group (https://arthomson.com/wpcontent/uploads/2013/04/Resources-Mechanical-AESSEAL-Guides-AUTO.pdf)
- A guide to auto paint colors by The coating store (https://www.thecoatingstore.com/car-paint-colors/)
- A guide in Introduction to FTIR by Thermo Scientific. (http://tools.thermofisher.com/content/sfs/brochures/BR505 55_E_0513M_H_1.pdf)
- 5. Gothard, J., "Evaluation of Automobile Paint Flakes as Evidence," *J Forensic Sci* 1976;21(3):636-41,
- Audette, R. and Percy, R., "A Novel Pyrolysis Technique for Micro Paint Analysis," *J Forensic Sci* 1978;23(4):672-8.
- Ryland, S. and Kopec, R., "The Evidential Value of Automobile Paint Chips," *J Forensic Sci* 1979;24(1):140-7.
- Ryland, S., Kopec, R., and Somerville, P. "The Evidential Value of Automobile Paint. Part II: Frequency of Occurrence of Topcoat Colors," *J Forensic Sci* 1981;26(1):64-74

- Burke, P., Curry, C. J., Davies, L. M., & Cousins, D. R. A comparison of pyrolysis mass spectrometry, pyrolysis gas chromatography and infra-red spectroscopy for the analysis of paint resins. *Forensic Sci Int* 1985;28(3-4):201–19.
- Cassista, A. R., & Sandercock, P. M. L. Comparison and Identification of Automotive Topcoats: Microchemical Spot Tests, Microspectrophotometry, Pyrolysis-Gas Chromatography, and Diamond Anvil Cell Ftir. *Canadian Soc Forensic Sci J* 1994;27(3), 209–23.
- McDermott, S. and Willis, S. "A Survey of the Evidential Value of Paint Transfer Evidence," Journal of Forensic Sciences, 1997;42(6):1012-8.
- Giang, Y., Wang, S., Cho, L., Yang, C., and Lu, C. "Identification of Tiny and Thin Smears of Automotive Paint Following a Traffic Accident," *J Forensic Sci* 2002;47(3):625-9.
- Jose R. Almirall, Tatiana Trejos, Andria Hobbs, Kenneth G. Furton, "Trace elemental analysis of glass and paint samples of forensic interest by ICP-MS using laser ablation solid sample introduction," Proc. SPIE 5071, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement II, (22 September 2003)
- G. Edmondstone, J. Hellman, K. Legate, G.L. Vardy & E. Lindsay. An Assessment of the Evidential Value of Automotive Paint Comparisons, *Canadian Soc Forensic Sci J* 2004;37(3):147-53
- Flynn, K., O'Leary, R., Lennard, C., Roux, C., and Reedy, B. "Forensic Applications of Infrared Chemical Imaging: Multi-Layered Paint Chips," *J Forensic Sci* 2005;50(4):JFS2004502-10
- Buzzini, P., Massonnet, G. and Monard Sermier, F, The micro Raman analysis of paint evidence in criminalistics: case studies. *J Raman Spectrosc* 200637:922-931
- Troiano, N. W., Goldberg, C. G., Schlachter, P. B., & Kacena, M. A. Paint Chip Analysis in a Forensic Investigation: Lessons Learned From Metal Bone Implants. *J Histotechnology* 2008;31(1):25–7

- Szafarska, M., Woźniakiewicz, M., Pilch, M., Zięba-Palus, J., & Kościelniak, P. Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes. *J Mol Struct* 2009;924-926, 504–13.
- Asfaw, A., Wibetoe, G., & Beauchemin, D. Solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry for discrimination of automotive paint samples in forensic analysis. *J Anal Atomic Spectrom* 2012;27(11):614-21.
- Yang, S.-H., Shen, J. Y., Chang, M. S., & Wu, G. J. Quantification of vehicle paint components containing polystyrene using pyrolysis-gas chromatography/mass spectrometry. *Anal Methods* 2012;4(7)
- Rui Chen, Jungang Lv & Jimin Feng () Characterization of Paint by Fourier-Transform Infrared Spectroscopy, Raman Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, *Anal Letters* 2015;48:9:1502-10.
- 22. N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu et al, Characterization of Automotive Paint by Optical Coherence Tomography, *Forensic Sci Int* 2016.
- Akafuah, N., Poozesh, S., Salaimeh, A., Patrick, G., Lawler, K., & Saito, K et al. Evolution of the Automotive Body Coating Process—A Review. *Coatings* 2016;6(2):24.
- K. B. Ferreira, A. G. G. Oliveira and J. A. Gomes, Raman spectroscopy of automotive paints: Forensic analysis of variability and spectral quality, *Spectroscopy Letters* 50;2(102)
- Kruglak, K. J., Dubnicka, M., Kammrath, B., Maxwell, V., & Reffner, J. A. The Evidentiary Significance of Automotive Paint from the Northeast: A Study of Red Paint. *J Forensic Sci* 2019.

How to cite this article: Verma P, kaur M, Kaur N. Forensic analysis of automobile paint of Indian company. *Int J Forensic Med Toxicol Sci* 2019;4(3):74-81.